
LLNL-POST-804618

This w ork w as perform ed under the auspices of the U .S. D epartm ent of Energy by Law rence Liverm ore N ational Laboratory under contract D E-AC52 07N A27344.

While GPUs are enabling the scaling of new performance peaks, their limited memory sizes are still an
obstacle to codes using large quantities of data. Teton, a thermal radiative transfer code, reads and writes
data many times the size of GPU memory, which results in more memory transfer overhead. To alleviate
this overhead, the Teton team prototyped a CUDA-C streaming version of its linear sweep, that enables
more data to be processed than the GPU can usually hold. This capability allows Teton to run larger
problem sizes, and increases performance by overlapping memory transfers with computation.

Linear sweep characteristics:
• Large number of unknowns.
• Dependencies between variables.
• Large % of runtime.

Introduction Modifications for Streaming Results

Background

Future Work

Lawrence Livermore National Laboratory, *NVIDIA

Steven Rennich*, Teresa Bailey, Aaron Black, Peter Brown, Robert Chen, Terry Haut, Adam Kunen, John Loffeld, Paul Nowak, Bujar Tagani, Ben Yee

Experiences with CUDA Streaming in Teton’s Linear Sweep

H2D D2H

Total Compute
Ramp Down

Ramp Up

Terminology:
Ramp = time during computation when not all kernels

active
Total Compute includes Ramp Up and Ramp Down

Cycle Statistics:
% Overhead of H2D+D2H vs. Total Compute = 0.81%

% Overhead of Ramp Up vs. Total Compute = 12.92%
% Overhead of Ramp Down vs. Total Compute = 14.25%
% Overhead of Ramp Up + Ramp Down vs. Total Compute = 27.97%

Streaming Linear Sweep (CUDA-C) Last Cycle Timings (seconds)

iter 1 iter 2 iter 3 iter 4 subtotals

H2D 0.00719266 0.00674312 0.00719266 0.00674312 0.02787156

Ramp Up 0.14340368 0.14879817 0.14205505 0.14924771 0.58350461

Total Compute 1.1576 1.08924 1.08654 1.18454 4.51792
Ramp Down 0.14025689 0.14879817 0.14250459 0.2121835 0.64374315

D2H 0.00179817 0.00179817 0.00179817 0.00314679 0.0085413

Total Compute
H2D D2H

Standard Linear Sweep (OpenMP Target Offload) Last Cycle Timings (seconds)

iter 1 iter 2 iter 3 iter 4 subtotals
H2D 0.44304131 0.003409 0.00337925 0.0040936 0.45392316

Total Compute 0.9736103 0.86929491 0.86959245 0.91361693 3.62611459

D2H 0.00324177 0.00312492 0.00253443 0.12504085 0.13394197

Cycle Statistics:
% Overhead of H2D+D2H vs. Total Compute = 16.21%

Scaling Configurations (3D, 16 groups, 4 ranks)
150k zones 300k zones 600k zones 1.2M zones

80 SMs used 8 groups/SM
40 angles

4 groups/SM
20 angles

2 groups/SM
10 angles

1 group/SM
5 angles

40 SMs used 4 groups/SM
10 angles

2 groups/SM
5 angles

20 SMs used 4 groups/SM
5 angles

GPU Memory Usage Per Configuration
150k zones 300k zones 600k zones 1.2M zones

80 SMs used 8.7 GB 8 GB 8.3 GB 8.5 GB

40 SMs used 8.3 GB 8.5 GB

20 SMs used 8.5 GB

Grind Time Per Configuration (unknowns/second)

150k zones 300k zones 600k zones 1.2M zones

80 SMs used 60160000 63333333 56655737 41103230

40 SMs used 43746835 34912985

20 SMs used 25125240

Problem Configuration

Linear Solve
(Sweep)

50%-90% runtime

Grey Acceleration
< 5% runtime

Synchronization point

Non-linear Solve (“0D”)
(Thermal iteration)
10%-50% runtime

Check Convergence
< 1% runtime, synchronization point

Temperature Iteration Loop

Teto
n

’s So
lu

tio
n

 A
lgo

rith
m

Y(", Ω, %, &)

1D energy grid2D angular grid 3D space grid

1D
 ti

m
e

Fortran Implementation:
• Uses OpenMP 4.5 target offload to run sweep on GPU.
• “Mapped” host-to-device and device-to-host memory transfers.
• Memory transfers not overlapped with computation.

Figure 1. Nvidia Performance Profile of one cycle (with 4 iterations) of linear sweep

Figure 2. Nvidia Performance Profile of last iteration of linear sweep

3D radiating sphere:
• 100K zones, 16 groups, 80 angles
Mapping to GPU:
• 4 energy groups/SM
• 20 simultaneous angles (kernels)
1 node:
• 2 IBM POWER9 CPUs, 256GB memory
• 4 NVIDIA Volta GPUs, 16GB memory

Streaming code design:
• CUDA-C conversion with Fortran interface.
• Sweep variable sets within an SM to minimize synchronization overhead.
• Asynchronously stream data through GPU to minimize transfer overhead.
• As much as possible, keep sweep logic intact.

Fortran OpenMP 4.5 Streaming CUDA-C

Shared memory usage 8.6KB 96KB (max)

Register count per GPU thread 128 76

Threads per block 512 128

Notes:
• Specifying shared memory variables in OpenMP 4.5 is difficult. Can be specified in 5.1.
• Streaming register count could be reduced further with more optimization of temporary

variables.
• Streaming threads per block was capped at 128, but could be increased to ~800.
• Streaming sweep algorithm based on original non-parallelized version of sweep.

Implementation details:
• Each sweep kernel computes 1 angle, and each angle is associated with a specified

number of groups (groups per block).
• The number of groups per block needs to be scaled by the user such that GPU memory

usage is not exceeded.
• Each hyperplane contains a zone loop.
• Zones are batched to scale with the number of groups per block, into chunks. The sweep

kernel logic iterates over these chunks.
• A small amount of data is directly copied to the GPU per kernel launch. Although this is

not optimal, the copies are small enough to be overlapped with computation. Further
optimization or caching of these data structures would have a modest impact on
performance.

• Converted initialization, update, and 2 helper functions into separate streaming kernels.

Figure 3. Nvidia Performance Profile of one cycle (with 4 iterations) of streaming linear sweep

Figure 4. Nvidia Performance Profile of last iteration of streaming linear sweep

Figure 5. Scaling study of streaming linear
sweep, maintaining constant GPU memory
usage, while increasing zone count

• Ramp time scales to the amount of GPU memory used (time required to fill GPU
memory), and is the same regardless of problem size.

• Ramp down can be considered the streaming overhead (14.25% per cycle) for this
problem configuration, which is similar to the OpenMP overhead (16.21%).

• Streaming implementation is bounded by system memory, rather than GPU memory.
• 4+ groups/SM enables coalesced memory accesses for better performance.
• Spreading problem over more SMs begets better throughput.
• Can fit problems onto GPU by scaling SM use (# angle kernels), and/or groups per SM.

• Find limit of maximum number of zones which can be handled by streaming.
• Integrate streaming sweep as option into main codebase.
• Implement Fortran OpenMP 5.1 sweep with streaming and shared memory.

Non-Overlapped Memory Transfers

Overlapped Memory Transfers

